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Abstract, We consider the evolution of a two-level system driven by a non-self-adjoint
Hamiltonian H(ct) and treat the adiabatic limit ¢ — 0. While adiabatic theorem-like
results do not hold true in general for this case, we prove that they are still valid for
the subspace comresponding to the eigenvalue having the largest imaginary part {least
dissipative eigenvalue). The theory gives the full asymptotic expansion of the evolution
restricted to this subspace. The first correction beyond Berry’s phase is to our best
knowledge given explicitly for the first time.

1. Introduction

The adiabatic approximation for dissipative systems appears naturally in atomic
physics and quantum optics. The interest in the special case dealing with only a
finite number (e.g. two) of states has been renewed by [1-3] (see also [4]). Most of
the papers are concerned with the generalization of Berry’s phase to non-self-adjoint
Hamiltonians and the validity of the adiabatic theorem is taken for granted. There
are two regimes to be discussed. The first one is the ‘weak non-Hermiticity’ regime
in which the absolute values of the imaginary parts of the eigenvalues are of the same
order of magnitude as the slowness parameter (which we call e in what follows). In
this case (as has been proven in [3]) a compiete generalization of the adiabatic the-
orem for non-degenerate eigenvaltues is possible; Berry’s phase (complex in general)
and the transition probabilities can be computed. If degeneracies occur, the situation
is more subtle (due to the conflicting demands between the adiabatic approximation
and the experimental requirement that the signal should not be completely cancelled
by the dissipation); we refer the reader to [2] for the discussion of this interesting
case which seems to deserve further study.

The second regime is the ‘strong non-Hermiticity’ one in which at least some
of the eigenvalues have imaginary parts much larger (in absolute value) than the
slowness parameter. In this case (see the discussion below) a complete generalization
of the adiabatic theorem seems not to be possible. However, in this paper we prove
an adiabatic theorem-like result for the strong non-Hermiticity regime. More exactly
we will prove that an adiabatic expansion exists for the evolution restricted to the
subspace corresponding to the least dissipative eigenvalue (ie. the one having the
largest imaginary part), which is assumed to be isolated.
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For simplicity we only treat a two-level system. For n-level systems (n > 3)
with non-degenerate spectrum the proof carries over directly. With some additional
technicalities the result can also be extended to more general situations. The theory
we have developed permits us to calculate the whole asymptotic expansion in ¢, having
as the leading term the result given in [1]; in addition we give the explicit formula
for the first-order correction.

We make two further remarks. Firstly, we do not require a definite sign for
the imaginary parts of the eigenvalues; thus our results also apply to systems with
pumping. Of course the considered eigenvalue should not be strongly dissipative in
order to avoid the cancellation of the signal. Secondly, since in the non-self-adjoint
case the unitarity of the evolution is lost, our results do not imply results about the
transition probabilities.

As already remarked above, in the strong non-Hermiticity regime, if the consid-
ered eigenvalue is not the least dissipative one, it seems that the adiabatic approxi-
mation as used in [1] does not hold.

To see this we consider a non-self-adjoint time-dependent Hamiltonian H(et) #
H J'(«-:t) (with ¢ > 0) in a two-dimensional Hilbert space. We introduce the variable

s = et, In the following we will be interested in the limit ¢ — 0 whilst s is kept fixed
and finite. We write H(s) in the form given in [1]:

2
H(s) =Y ED(s)[D ()0 (s)l (LY

j=1

where it is assumed that (64)(s)|9*)(s)} = 6,, so that EG)(s) are the eigenvalues
of H(s).

Let [¥(s)) be a solution of the time-dependent Schrodinger equation (we often
abbreviate 9, = )

ie|¥(s)) = H(s)|¥(s)). (1.2)
Expanding
2 .
() = 3 Ps)exp ( ~ LW(6))190(s) 13)
i=1

we get (see e.g. [1])
() + (0 (s)10,4 D (s))e(s)

= - S0, 4 (N ) exp (- W) - WO ) . (19
i# €
Here we have used the abbreviation
Wi(s) = / E(u)du.

J9

Equation (1.4) is usually taken as the starting point to justify the lowest-order adia-
batic approximation (see e.g. [1]): For H(s) = H1(s) the E¢)(s) are real and the
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right-hand side of (1.4) can be neglected in the limit ¢ — 0 because of the resulting

rapid oscillations. For H(s) # H 7(3) the situation is more involved. Assume for
definiteness that

Im[E®)(s) — EM(s)] < 0.
The right-hand side of (1.4) can then only safely be neglected for the equation
corresponding to { = 1. For [ = 2 the right-hand side blows up as exp(const e~!) in
the limit ¢ — 0. Since the system of differential equations is coupled the justification
of the adiabatic approximation for both ¢V needs a more careful examination.

From the resulis in section 2 it follows in particular that if H(s) is constant
outside the interval [s_,s,], so<s_,s2 s, and

Im[E®(u) - EO(u)] <0 sgSusgs

then

(e) = O (sg)exp [ duf-@D(w]a, 5 (w)
+ ie[E“)(;) — EM(u)]=1(8,6M)(w) [P (1)) (6P (w)[3, PV (w))}
+ O(). (L5)

The first term corresponds to Berry’s phase [5], the second is the first-order
correction in e to the adiabatic approximation and thus goes beyond the results given

. 11
1 ji].

2, The adiabatic theorem for non-self-adjoint Hamiltonians
We assume that
|E®(s) - EO(s)| 2 d >0
and moreover that E(1)(s) is the least dissipative eigenvalue, ie.
Im[E®)(s) - EM(s)] 0.
It is sufficient to treat the case
EM(s)=o0. (2.1)

The general case can be reduced to this one by using the shifted Hamiltonian

.-

H(s)+ EW(s) {(2.2)

which changes the Schridinger evolution operator by the numerical factor

exp (-— % f Em(u)du) . 23)
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Let ' be the circle centred at the origin with radius 1/2d, so that it does not
enclose the other eigenvalue. The necessary technical smoothness condition for H(s)
is

sup | BL(H(s)—2) IS M; € 1=0,1,2.... (2.4)

8,z€

A condition of this sort is always (explicitly or implicitly) assumed in dealing with
the adiabatic expansion. For results up to and including terms of order €* it is
sufficient to have (24) for I < kb + 1.

The projector corresponding to the eigenvalue 0 of H(s) is

PU)(s) = —%fr[ﬂ(s) — 214z,

We write the recurrence construction of [6, 7] adapted to the present problem in
the following way. For ¢ small enough we define with H,(s;¢) = H(s)

Hipi(si€) = Hy(si€) + Bi(sie) (k=0,1,2...) (2.5)
where

By(sie) = 22: P (s;){ie P (si€) - [H(s), PP (si0))}  (2.6)
with

P (si¢) f[Hk(s €)—2]""dz 2.7
and

PP (s;e)=1- P (s;e). 2.8)

Let Uf(s,sy,¢) be the solution of
1€, Ug'(s, 505 €) = HiM(s3€)Uf (s, 805 €) U sgr805€) =1 29
where

Hf(s;€) = H(s) — B,(s;¢€) (k=10,1,2...). (2.10)

According to the theory developed in [6, 7] we have the following intertwining prop-
erty :

P53 QUL (s, 503€) = U (s, 503 €) P (sg5€) (2.11)
We also have the estimate

| Bi(s;€)ll € €¥¥1b,(s). (2.12)
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Now let U(s, s,; €) be the solution of
i€, U(s,84;€) = H(8)U(s,845¢€) U(sg.sq;€) =1
and define
Q,(s,505€) = (UL 15,55 €)U(s, 505 €) . (2.13)

One easily verifies from [6, 7] that

Q,(s,555€)—1= 1_1(;] (U2 Hu, sq;€) B(u; UL u, 553 €)2,(u, sgi€) du.
(2.14)

Up to now the results taken over from [6, 7] do not depend on the self-adjointness
of H(s) and therefore carry over to our present problem. The difference comes up
if we try to use the integral equation (2.14) to estimate [|2, ~ 1||. In the self-adjoint
case, due to the unitarity of U7, the integral equation gave at once

12,500 - T < e [ by au.

If H# HY, ||UA| and ||(U£)~1(| can blow up and the estimate no longer holds.

To sce which estimate is physically relevant let us first notice from the defi-
nition of B, (2.6) that if H(s) is constant outside [s_,s,}, then P,E’ )(.s;e) =
PU(s.), (PW(s_)) if s » s,, (s < s_). Therefore, taking s, and s on
the left and on the right of that interval, the quantity we are interested in is
the probability that under the influence of H(s) the eigenstate corresponding to
PW(s,) = PU(s_) goes over into the eigenstate of P(s) = P(s,). This amounts
to the calculation of

PO (YU (s, 595 €) PM(sp).

The interval can also be taken to be the whole real axis, if H(s) approaches limits
sufficiently quickly; this amounts to imposing the condition

frw b, (u) du < oo. (2.15)

In what follows we will consider
P (s;e)U(s, 50 €) PP (sp3€)  forall s>y,
Now, due to the definition (2.13) of 2, and the intertwining property (2.11)
P{(s1€)U(s, 50 €) Py (53 €)
PV (s; YU (5, 50: ) P{ (503 €) P (303 ) (5, 503 €) Py (555 €)
P (s3)UL (s, 801 €) P{ (503 €)
X {1 + P,El)(so; e)[Q (s, 8q5€) — l]P,(El)(su; c)} .
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In our framework, to establish the adiabatic approxunanon of order k& means to prove

that the second term in the curly bracket is of order ¢* and can be neglected. That
this is possible depends on the estimate

1P (505 (245, 595 €) = 1) P (55 )] < ce® (2.16)
where c is a constant uniformly bounded in s, s, with s > s, and e sufficiently small,

Before proving the above we give an explicit formuia for UA(s,s,;¢€). To this
end we first define ¥{/)(s; ¢) and 6{(s;¢) by

) (s1) = PO (s )d(s) 2.17)
09 (s;€) = PO (5 €)00)(s) . (2.18)
The () and Y’ are eigenvectors of H, and H respectively. Notice that

O (sl (5 =0 for j£L.
Furthermore we define
(J)(s Spi€) = Uf(s,su;e)gf)f)(so;e). (2.19)
From the intertwining property (2.11) and the Qeﬁnition {2.17) we have
). @20)

From the differential equation (2.9) for U one gets the differential equation for
(J)

(B(J)(s G)IU')(J)(S 6))3 tp(J)(s, S0; e) + i(ég)(s; e)laa,,"ﬁgcj)(s; e))
L6 (51 B (55 1Y (53 ) | @.21)
00 (39, 59:€) = 0.

This has the solution

(5,801 €)
_ / e (65 (ws N H A 19 (ws ©)) — 18 (w; 12,9 (w1 )
50 (67 (u; ) [T (w5 €))
(2.22)
An arbitrary vector can be written as a linear combination of the 12)53 Nspi€):
2 . : -~ .
w=3 " a® PP (55 )P (sy) (2.23)

j=1
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AUsing (2.19) and (2.20) we see, that with (2.22) we have the explicit solution for
Ugh

2
Ui (sss0,€) =Y allexp [—iwf)(s, so;f)] PY)(s;€)99(s) . (2.24)

i=1
If 5, < s_ and s > 5, (2.23) and (2.24) become
2 o 2 ) .
U (s130,) 3 a9 (s_) = Y oW exp [ (5,501 )] $0(sy) . (229)

F=1 i=1

We now compute explicitly the first terms of :pgj ) as an expansion in e. To do this
we will use the fact that due to (2.10) and (2.12)

Hf = H+ O(M). (2.26)

This means that we can replace H 2 by H in (2.21) and (2.22), if we want to calculate
«p(k’ ! up to and including terms of order €*. To get the expansions of 1,{;53 ) {and éf ))
we have to expand P,Ef ) (and P,Ej)f). To this end we write
P)(si€) = PO(s) + 3 Q) (s)
i=1

From (2.5), (2.7) and (2.12) we see that

Q) =0, for n<k.

In other words if we increase k, the low-order expansion coefficients do not change.
We are in fact only interested in the expansion up to and including n = 2. Taking & >
2 the operators Q) ;, Q. do not depend on k and we can write (also suppressing
the arguments s and ¢)

P = PO 4 @) 4+ QP + 0(®) k2.
Using the projection property P,Sj 2 = P,Ej ) one easily derives (for future use)

p(i)Q(lJ')P(J') =0 (2.27)
p(i]ng)P(J') — _p(j)Q(l-f)zp(J') . (2.28)

The last equation allows us to eliminate QY in what follows. From (2.5) and (2.6)
we have

2
H = H+iey POPY,

i=1
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From (2.7) we have
W1 -t
P = 2“_1}}:(1{1 z)"tdz

1

2
= ~zf [(H—z)'l—(H-z)'licj; PU)PU)(H—z)-‘]dz+G(e2)

= PW 4 QM +0(e?)
with

sy = —E(—gém[Pm(s)P(”(s)Pm(s) + PO(s) PO(5) PO 5)].

We have thus expressed le(s) and by (2.8) also Pfﬁ)(s) up to terms of O(e?) by
the given quantities.

To get cpgj ) from (2.22) up to terms of O(€?) we have to calculate the denominator
of the integrand up to terms of O(¢®), With (2.17) and (2.18) we have (again for
k>22)

) (s.€) = [PD(s) + € QF () + QP ()]0 (s)
00(s16) = [PO1(s) + €QPN() + 2QF (6)109()
Using (2.27) and (2.28) one easily derives
05 P (530)) = 1= (89)()|QF ()9 (s)) + O() (229)
Using the identity for projectors P’ PV PU? = 0 one can calculate
(67(53 10,9 (s; €)) = (69)(5)[8,8(8)) + €[ (09) ()| PD(5)Q ()
+ QP () PO()E(s)) + (8(5)|QF) ()18, D(5))] + O(e?) .

P

{2.30)

Remembering (2.26) and using (2.27) as well as some other of the preceding relations
we get

(0 (s: ) HL I (5100 = ED () + & EY(8) + O()
with
ES(s) = (09(s)| - 2EW(5)QY7(5) + QP N(8) H()QP () [dW(s)y . (231)

Equations (2.29), (2.30) and (2.31) allow us to calculate gogc” from (2.22) up to apd
including the linear terms in . Keeping in mind the fact that we treated the special
case (2.1), we have after some algebraic manipulations for k > 2

a
‘P(kl)(s'l 303 6) = j

30

(- e io, 5wy

- ﬁ%(u—)(8u9‘1)(u)|P("’)(u)|6u113(”(u)) + O(ez)) du. (2.32)
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Going over now to the case with E(1)(s) # 0, we see that in accordance with
(2.2) we have to replace E(D(u) by E®(u)— EMW(u) in (2.32), where EU)(s) from
now on are the eigenvalues of the shifted Hamiltonian. Taking together (2.3), (2.25)
and (2.32), and then comparing with (1.2) and (1.3) shows that (1.5) holds as soon as
the estimate (2.16) holds, which we will prove now (for the unshifted Hamiltonian!).

A finite number of constants, uniformly bounded with respect to s and € € [0, €]
for some ¢, > 0, will appear during the estimation. For simplicity we shall denote all
of them by the same letter . Recall that we assume (2.4) and if s, (s_) = oo (~o0)
then in addition (2.15) has to hold.

We start with (2.23), written for general s:

L

P = Eag)(s)vfﬁg)(s; €).
i=1

Since
Gy s 88
)= GO )
we have
() < e vl (2.33)

Furthermore, from (2.22), (2.29), (2.30), and (2.31) we have
Im Lpgcj)(s,se;e)gc for s> s,
and moreover
—Im w&l)(s,sg; €)Kc.,
From (2.24), (2.33) and ||${’’(s; €)]] < ¢ it follows that for s > u
10 (s, i o)l < c. (2.34)
From (2.24) we have furthermore for 5 > s,
2 2
(U2 (8,500 D 0 ()8 (55 ) = Y 0 (s) exp [ (5, 303 €)] D (501 €)
=1 i=1
so that
PO (s0; ) UL (5,853 )P (s3€)|9) = exp [isoil)(s,so; e)] al(8) b (505 €))
and

PMsgs QUA (5,85 ) PV (s3€)|| S e (2.35)
k 0 0 k
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Taking into account (2.14) and (2.11) in the Dyson expansion for €, — 1, we have
P (503 €)(R4 (5, 80€) = P (sg5 €)

o0 a 3 Sp=l
= z(ie)-"f dslj dsz---/ ds,
n=1 20 L4 dn

x [P\ (80: QUA (54, 81 €) P (5,5 €)
% Bp(sy; €)Uf(31 183) Bi(sqy3€) -
X U (801,801 €) By(505 QUL (5,50 €) P (sg3€)]
This series we estimate term by term. Using (2.34), (2.35) and (2.12) we obtain
0 ntl s n
P20 o005 ) = DB ool € 3o (e [ hucnd)

n=1

which gives the desired estimate (2.16).

3. Example and remarks

As an example we take the model (motivated by [8]) treated in [3]. The Hamiltonian
in H = C? written in the basis

0=(3) m=(9

has the form
w() Q(s)

where w(? > wV) and 8 > 0 are independent of s. §(s) is supposed to be bounded
with many bounded derivatives.
The Hamiltonian given by (3.1) can be put in the form (1.1) with

EM(sy=1 (w(l) +w@ - Lig— i+ o) +iy/ir- a:)) (3.2)

E(2)(5) = % (w(l) +uw®_ Lig+ %(r + z)— i\/%(r - a:)) (3.3)
Here

T = (w(2) __w(l))2 _ %;@2 +4|912 r=+vz2+ y? y= B(w(l) __w(Z)) <0.

The positive square root has to be taken in these formulae and we have suppress.ed
the dependence on s, as we will do in the following. The eigenstates become with
the correct normalization:

|1,b(1)) = N(l)[nmll) + (E(l) - w(l))|2)] 3.4
[6®) = NOED - @ + §if)1) + Q[2)) 3-5)
160y = NO[Q~[1) + (EW* — w(Dy2)] (3.6)

|6y = NO[(E@* - ™ - LiB)1) + Q[2)] 3.7
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with
NONG = 102 4 (ED = 1)2)? (3.8)
NON®* = (|0 4 (ED - w® 4+ Lig)]. (39)
The main conclusion is that from (3.2) and (3.3) it follows that
Im[E®(s) - E(s)] €0 for all s

so that the theory developed in the previous section applies. Notice that for 3 # 0
the equality is reached only if w(!) = w(? and || > 173.

Assuming that 2(s) = 0 for s < s_ and s > s, and inserting (3.2) to (3.9) into
(1.5) we have c(V( s) explicitly. Multiplying by the factor (2.3) we have the probability

o pey 2
D (s)exp (— i-./ EN(u) du)
F .

that if the system is in the state [1) at s = s_ it will be in that state for s 2> s.

As discussed already in the introduction we did not make use of the scaling
assumption used in [3), namely that 3 is of order e.

Notice also that no condition is imposed on Im E(1), so that the results apply for
‘pumping’ systems as well.

We end with a remark of a general nature. Assume, for the moment, that in
(1.1) the EWW(s) are real and 4)(s) = 6()(s), so that H(s) = HT(s). Assume
moreover that H(s) is analytic in a strip around the real axis and that it approaches
limits for s — oo sufficiently fast. Then, as has been proved in {9] (for related
results of this sort see [10-12]) the adiabatic transitions are exponentially suppressed.
This means if at all ¢ = —oo the system was in the state corresponding to E((~00),
then at t = 400 the system will be in the state corresponding to E(Y)(4oc0) with
probability 1+ @(exp(—c/€)),c > 0. Suppose now that we replace E™(s) by
E2)(s) ~i8, B > 0, so that the corresponding level is unstable. Naively one might
believe that since the two levels are adiabatically decoupled the result about level 1
remains valid. Actually this is not so since our results show that in this case starting
again with the state corresponding to E(V)(—o0) the probability of finding the system
in the state corresponding to E(}(+00) is 1 — ac+ O(€?), a > 0.
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