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AbstracL We mnsider the evolution of a two-level system driven by a non-self-adjoint 
Hamiltonian H ( e t )  and treat the adiabatic limit e t 0. While adiabatic theorem-like 
results do not hold true in general for this case. we prove that they are still valid for 
the subspace mrrespnding lo the eigenvalue having the largest imaginary part (least 
dissipative eigenvalue). The theory gives the full asymptotic expansion of the evolution 
restricted to this subspace. n e  first correction beyond Beny's phase is to our best 
lolowledge given explicitly for the first time. 

1. Introduction 

The adiabatic approximation for dissipative systems appears naturally in atomic 
physics and quantum optics. The interest in the special case dealing with only a 
finite number (e.g. two) of states has been renewed by 11-31 (see also [4]). Most of 
the papers are concerned with the generalization of Berry's phase to non-self-adjoint 
Hamiltonians and the validity of the adiabatic theorem is taken for granted. There 
are two regimes to be discussed. The first one is the 'weak non-Hermiticity' regime 
in which the absolute values of the imaginary parts of the eigenvalues are of the same 
order of magnitude as the slowness parameter (which we call E in what follows). In 
this case (as has been proven in i3jj a compiete generaiization of the adiabatic tiie- 
orem for non-degenerate eigenvalues is possible; Berry's phase (complex in general) 
and the transition probabilities can be computed. If degeneracies occur, the situation 
is more subtle (due to the conflicting demands between the adiabatic approximation 
and the experimental requirement that the signal should not be completely cancelled 
by the dissipation); we refer the reader to [2] for the discussion of this interesting 
M J C  WII,c.II W S I I W  L" "C>GL"G LUILIlGl aruuy. 

The second regime is the 'strong non-Hermiticity' one in which at least some 
of the eigenvalues have imaginary parts much larger (in absolute value) than the 
slowness parameter. In this case (see the discussion below) a complete generalization 
of the adiabatic theorem seems not to be possible. However, in this paper we prove 
an adiabatic theorem-like result for the strong non-Hermiticity regime. More exactly 
we ~ i ! !  pmnye tha! 12 adicbe!ic eq?aminr exists fer !he eve!-!bn restrk:ed to :he 
subspace corresponding to the least dissipative eigenvalue (i.e. the one having the 
largest imaginary part), which is assumed to be isolated. 

^"^^ ... i..:^L ----" .̂  A"-"-.- &-..-Al.̂ - .̂..A.. 
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For simplicity we only treat a two-level system. For n-level systems (n 2 3) 
with non-degenerate spectrum the proof carries over directly. With some additional 
technicalities the result can also be extended to more general situations. The theory 
we have developed permits us to calculate the whole asymptotic expansion in e,  having 
as the leading term the result given in [l]; in addition we give the explicit formula 
for the fiist-order correction. 

We make two further remarks. Firstly, we do not require a definite sign for 
the imaginary parts of the eigenvalues; thus our results also apply to systems with 
pumping. Of course the considered eigenvalue should not be strongly dissipative in 
order to avoid the cancellation of the signal. Secondly, since in the non-self-adjoint 
case the unitarily of the evolution is lost, our results do not imply results about the 
transition probabilities. 

As already remarked above, in the strong non-Hermiticity regime, if the consid- 
ered eigenvalue is not the least dissipative one, it seems that the adiabatic approxi- 
mation as used in [ l ]  does not hold. 

To see this we consider a non-self-adjoint time-dependent Hamiltonian H ( E ~ )  f 
H t ( c t )  (with c > 0) in a two-dimensional Hilbert space. We introduce the variable 
s E c t .  In the following we will be interested in the limit E + 0 whilst s is kept fixed 
and finite. We write H ( s )  in the form given in [l]: 

2 

j = 1  

where it is assumed that ( e ( j ) ( ~ ) [ $ ~ ) ( s ) )  = 6,, so that E ( j ) ( s )  are the eigenvalues 
of H ( s ) .  

Let IQ(s)) be a solution of the time-dependent Schriidinger equation (we often 
abbreviate a, ' ) 

ic l@(s))  = H ( s ) l ~ ( s ) ) .  (1.2) 

Expanding 

(1.3) 

we get (see e.g. [l]) 

d')(s) + (e(')(s)la,4(')(s ))8( s)  

= - C(e( ' ) ( s ) la ,~c j ) ( s ) )e ( j ) ( s )exp  ( -  '[W(j)(s) € - W ( ' ) ( s ) ] )  . (1.4) 
j t l  

Here we have used the abbreviation 

W ( ' ) ( s )  = E ( ' ) ( u )  d u  . J1: 
Equation (1.4) is usually taken as the starting point to justify the lowest-order adia- 
batic approximation (see e.g. [l]): For H ( s )  = H t ( s )  the E ( j ) ( s )  are real and the 



Adiabatic theorem: non-self-adjoint Hamiltonians 5143 

right-hand side of (1.4) can be neglected in the limit 6 -t 0 because of the resulting 
rapid oscillations. For H ( s )  # H t ( s )  the situation is more involved. Assume for 
definiteness that 

Im[E(')(s) - E(')(s)] < 0. 
The right-hand side of (1.4) can then only safely be neglected for the equation 
corresponding to 1 = 1. For 1 = 2 the right-hand side blows up as exp(const E - ' )  in 
the limit E -* 0. Since the system of differential equations is coupled the justification 
of the adiabatic approximation for both c(') needs a more careful examination. 

From the results in section 2 it follows in particular that if H ( s )  is constant 
outside the interval [s-, s+], so < s-, s 3 s+ and 

I ~ [ E ( ~ ) ( ~ )  - ~ ( ~ j ( , ) ]  < o so < < 
then 

c(')(s) = c(')(so)exp d u { - ( e ( ' j ( u ) l ~ ~ ~ ( ' ) ( u ) )  1: 
+ ie[E(')(u) - ~ ~ ' ~ ~ u ~ ] ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ( ~ ) ) ( ~ ~ ~ ~ ( u ) ~ ~ ~ ~ ~ ' ~ ( u ) ) }  

+ U ( € ' ) .  (1.5) 

The first term corresponds to Berry's phase [SI; the second is the first-order 
correction in E to the adiabatic approximation and thus goes beyond the results given 
iii ilj. 

2. The adiabatic theorem for non-self-adjoint Hamiltonians 

We assume that 

IE(')(s) - E(')(s) l  3 d > 0 

and moreover that E( ' ) ( s )  is the least dissipative eigenvalue, i.e. 

Im[E(')(s) - E ( ' ) ( s ) ]  < 0 
I t  is sufficient to treat the case 

E(')(s) E 0 .  

The general case can be reduced to this one by using the shifted Hamiltonian 

+ E(:)jsji (2.ij 

which changes the Schrodinger evolution operator by the numerical factor 
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Let r be the circle centred at the origin with radius 1/2d, so that it does not 
enclose the other eigenvalue. The necessaty technical smoothness condition for H ( s )  
is 

sup 11 a i ( H ( s )  - f ) - l  [I< M ,  < 03 1 = 0 , 1 , 2 . .  . . (2.4) 
s,lEr 

A condition of this sort is always (explicitly or implicitly) assumed in dealing with 
the adiabatic expansion. For results up to and including terms of order ek it is 
sufficient to have (2.4) for 1 < k -k 1. 

The projector corresponding to the eigenvalue 0 of H ( s )  is 

We write the recurrence construction of [6, 71 adapted to the present problem in 
the following way. For E small enough we define with H,(s; E) = H ( s )  

H , + , ( ~ ; E )  = H k ( s ; e )  4- B,(s;c) (k = 0 , 1 , 2  ...) (2.5) 

where 

2 

B,(s;t) = ~ P ~ ) ( s ; E ) { i e P f ) ( s ; c )  - [H(s),Pf)(s;e)]) (2.6) 
j = 1  

with 

and 

P(2) k (  s; E) = 1 - Pj')(s; E) . 

Let U p (  s, so, E )  be the solution of 

(2.12) 
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Now let U( s, so; E )  be the solution of 

i d a U ( s , s o ; c )  = H ( s ) U ( s , s , ; t )  U(so , s0 ;c )  = 1 

(2.13) 

S Z , ( S , S o ; € ) - 1 =  7- *; j ; ( U t ) - l ( U ,  so; €)BI;(Ui € ) U t ( %  sa; €)RI;(% so; €) d u .  

(2.14) 

Up to now the results taken over from [6, 71 do not depend on the self-adjointness 
of H ( s )  and therefore carry over to our present problem. The difference comes up 
if we tiy to use the integral equation (2.14) to estimate IlSZ, - 111. In the self-adjoint 
case, due to the unitarity of U p ,  the integral equation gave at once 

If H # H t ,  IlUtll and l l (U~) - l l l  can blow up and the estimate no longer holds. 
To see which estimate is physically relevant let us first notice from the defi- 

nition of B, (2.6) that if H ( s )  is constant outside [.-,st], then Pk (s; E )  = 
P ( j ) ( s + ) ,  ( P ( j ) ( s - ) )  if s > st, ( s  < s-). Therefore, taking so and s on 
the left and on the right of that interval, the quantity we are interested in is 
the probability that under the influence of H ( s )  the eigenstate corresponding to 
P(l)(sa) = P ( l ) ( s - )  goes over into the eigenstate of P(s) = P(s+) .  This amounts 
to the calculation of 

( j  ) 

P ( ’ ) ( s ) U ( s , S o ; E ) P ( ’ ) ( s , ) .  

The interval can also be taken to be the whole real axis, if H ( s )  approaches limits 
sufficiently quickly; this amounts to imposing the condition 

t w  
b k ( u ) d u  < m. (2.15) 

In what follows we will consider 

~ f ) ( s ;  E ) u ( S ,  so; e ) ~ j ’ ) ( s , ;  e )  for all s > sa. 

Now, due to the definition (2.13) of SZ, and the intertwining property (2.11) 

P f ) ( s ;  €)U(S, so; €)Pjl)(so; €) 

= P~”(s;€)U~(s ,so;€)Pj~~(so;E)Pj1~(so;€)n,(s ,so;E)P~1~(so;€)  

= P ~ ” ( s ; E ) U p ( S , S o ; E ) P ~ ~ ~ ( s o ; E )  
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In our framework, to establish the adiabatic approximation of order k means to prove 
that the second term in the curly bracket is of order ek  and can be neglected. That 
this is possible depends on the estimate 

G Nenciu and G Rasche 

IIPil)(so; e)(n,(s, so; E )  - l)Pp(so; .)[I < C E k  (2.16) 

where c is a constant uniformly bounded in s, so with s 2 so and E sufficiently small. 
Before proving the above we give an expiicit formuia for U k ( s ,  so; E). To this 

end we first define @)(s; E) and s; E) by 

(2.17) 

(2.18) 

The 4:) and e?) are eigenvectors of H ,  and H ,  t respectively. Notice that 

(ef'(s; E ) I @ ( ~ ;  €1) = o for j + 1 .  

Furthermore we define 

From the differential equation (2.9) for U t  one gets the differential equation for vpp): 

(2.22) 

An arbitrary vector can be written as a linear combination of the @)(so; e): 

j = t  

(2.23) 
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Using (2.19) and (2.20) we see, that with (2.22) we have the explicit solution for 
U;: 

(2.24) 

If so < s- and s 2 s+, (2.23) and (2.24) become 

We now compute explicitly the first terms of &) as an expansion in E. To do this 
we will use the fact that due to (2.10) and (2.12) 

H p  = H + O(ekf ' ) .  (2.26) 

This means that we can replace H t  by H in (2.21) and (2.22), if we want to calculate 
qp(k) up to and including terms of order e k .  To get the expansions of (and @I) 

we have to expand Pf) (and Pf)'). To this end we write 

m 

Pf) ( s ; e )  = P ( J ) ( s )  + x e " Q t , L ( s )  
]=1 

From (2.5), (2.7) and (2.12) we see that 

Q(J)  k , n  - - Q(J) k+l,n for n 6 k. 

In other words if we increase k, the low-order expansion coefficients do not change. 
We are in fact only interested in the expansion up to and including R. = 2. Bking 12 2 
2 the operators Qk,l ,  Q k , 2  do not depend on k and we can write (also suppressing 
the arguments s and E) 

Pf) = P(l)  + E Q ~ '  + t 2 Q t )  + IC 2 2 .  

Using the projection property Pf)' = Pf ) one easily derives (for future use) 

(2.27) 

(2.28) 

The last equation allows us to eliminate Q f )  in what follows. From (2.5) and (2.6) 
we have 
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From (2.7) we have 

Pl --- ( H ,  - z ) - ' d z  
( l )  - 2, f 

= P(l) + €Q(l) 
1 +U(€') 

with 
(1) 1 

Q 1  (s) = --[~(')(s)P(')(s)P(')(s) + P ( 2 ) ( ~ ) P ( ' ) ( ~ ) ~ ( 1 ) ( ~ ) J .  
E @ ) ( s )  

We have thus expressed Piil(s) and by (2.8) also Pi2'(.) up to terms of U(.*) by 
the given quantities. 

To get ip? from (2.22) up to t e r m  of U( e') we have to calculate the denominator 
of the integrand up to terms of (?(e3). With (2.17) and (2.18) we have (again for 
k > 2) 

$ ! j ' ( s ; ~ )  = [P("(s )  + EQ(~I' ) ( s )  + ~ ~ Q Y ) ( s ) ] $ ( j ) ( s )  

e ( j )  (s ;c )  = [p(j)t( ,)+,Q(131t(~)+~ZQ(Zj)t(~)]e(j)(~).  

Using (2.27) and (2.28) one easily derives 

(e!j'!s; €)ldp(S; €1) = 1 - € 2 " ( ~ ) ( S ) ! & ' ? ' ' " S ) l ~ ( j ) ~ S ~ )  + 0(€3). 
Using the identity for projectors Pf)Pf)Pf) = 0 one can calculate 

(2.29) 

(e!j)(sj €)ps$! j ) (s;  €)) = ( e q s ) l a , $ q s ) )  + €[(e(;)(S)lP(~)(S)Q~)(S) 
+ Q y ) ( ~ ) P ( j ) ( s )  I$(')(s)) + (e(j'(s)lQ~'(.)la.$(J)(~))] + U(€ ' ) .  

(2.3cij 

Remembering (2.26) and using (2.27) as well as some other of the preceding relations 
we get 

(d (k ' ) ( s ; e ) lHb  A - ( j )  (s; E ) )  = E ( j ) ( s )  + e 2 E F ) ( s )  + 6 ( e 3 )  

with 

E F ) ( s )  = (&"(s)l - Z E ( J ) ( S ) Q ~ ) ~ ( S )  + Q ~ ) ( s ) H ( s ) Q ~ ) ( s ) ~ $ ( J ) ( s ) ) .  (2.31) 

Equations (2.29), (2.30) and (2.31) allow us to calculate pr' from (2.22) up to and 
including the linear t e rm in c. Keeping in mind the fact that we treated the special 
case (2.1). we have after some algebraic manipulations for k > 2 
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Going over now to the m e  with E(')(s) + 0, we see that in accordance with 
(2.2) we have to replace E ( 2 ) ( ~ )  by E(2)(~)--E(1)(~) in (2.32), where E ( j ) ( s )  from 
now on are the eigenvalues of the shifted Hamiltonian. %king together (2.3), (2.25) 
and (2.32), and then comparing with (1.2) and (1.3) shows that (1.5) holds as soon as 
the estimate (2.16) holds, which we will prove now (for the unshifted Hamiltonian!). 

A finite number of Constants, uniformly bounded with respect to s and E E [0, eo] 
for some eo > 0, will appear during the estimation. For simplicity we shall denote all 
of them by the same letter c. Recall that we assume (2.4) and if s+ (s-) = co(-w) 
then in addition (2.15) has to hold. 

We start with (2.23). written for general 5: 

2 

+ = C a f ) ( s ) & f ' ( s ;  E ) .  

j=1 

since 

we have 

Ia'k)(s)I < c MI. 
Furthermore, from (2.22), (2.29), (2.30). and (2.31) we have 

Im #(s, so; E) < c for s 2 so 

and moreover 

- 1 m & ) ( s , s 0 ; ~ )  < c .  

From (2.24), (2.33) and ~ ~ @ ) ( s ; e ) ~ ~  < c it follows that for s 2 U 

l lu,t(s,U;E)ll < c .  

From (2.24) we have furthermore for s > so 

(2.33) 

(2.34) 
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’Wing into account (2.14) and (2.11) in the Dyson expansion for Q h  - 1, we have 
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Pj”(so;€)(n, (S,So;€)  - l )Pp(so;€)  

which gives the desired estimate (2.16). 

3. Example and remarks 

As an example we take the model (motivated by [SI) treated in [3]. The Hamiltonian 
in ‘H = Cz written in the basis 

has the form 

($) w(:?lip) 2 

where &) 2 w ( l )  and p >, 0 are independent ( 3 .  n ( s )  is supposed to 
with many bounded derivatives. 

E ( ~ ) ( S )  = + ( ~ 1 )  + w(2) - +ip - ,/=+id-) 

The Hamiltonian given by (3.1) can be put in the form (1.1) with 

w(1) + w(2) - Lip 2 + ,/= - id-) 

Here 

(3.1) 

5 bounded 
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with 

~ ( 1 ) ~ ( 3 ) *  = + ( E ( ' )  - , ~ 1 ) ) 2 1 - 1  (3.8) 
N(2)N(4)* = [lnI2 +. ( E ( z )  I ,(2) + +ip)Z]-' . (3.9) 

The main conclusion is that from (3.2) and (3.3) it follows that 

~ m [ ~ i ~ j ( s )  - ~ c ~ j ( s ) ]  4 o for all 
so that the theory developed in the previous section applies. Notice that for p # 0 
the equality is reached only if w( ' )  = &) and IRJ 2 $0. 

Assuming that n(s) = 0 for s 6 s- and s > s+ and inserting (3.2) to (3.9) into 
(15) we have c(')(s) explicitly. Multiplying by the factor (2.3) we have the probability 

that if the system is in the state 11) at s = s- it will be in that state for s 2 s+. 
As discussed already in the introduction we did not make use of the scaling 

assumption used in [3], namely that p is of order e .  
Notice also that no condition is imposed on Im so that the results apply for 

'pumping' systems as well. 
We end with a remark of a general nature. Assume, for the moment, that in 

(1.1) the E ( j ) ( s )  are real and &)(s) = &)(s), so that H ( s )  = H t ( s ) .  Assume 
moreover that H ( s )  is analytic in a strip around the real axis and that it approaches 
limits for s -+ fm sufficiently fast. Then, as has been proved in [9] (for related 
results of this sort see [10-12]) the adiabatic transitions are exponentially suppressed. 
This means if at all 1 = -cc the system was in the state corresponding to E(')(-m), 
then at 1 = +m the system will be in the state corresponding to E(')(fm) with 
probability 1 t e)(exp(-c/c)), c > 0. Suppose now that we replace E ( 2 ) ( s )  by 
E ( 2 ) ( s )  - ip, P > 0, so that the corresponding level is unstable. Naively one might 
believe that since the two levels are adiabatically decoupled the result about level 1 
remains valid. Actually this is not so since our results show that in this case starting 
again with the state corresponding to E(')(  -m) the probability of finding the system 
in the state corresponding to E(')(+m) is 1 - a€ + O(ca),  a > 0. 
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